Давайте уравновесим это уравнение алгебраическим методом. Сначала мы присваиваем всем коэффициентам переменные a, b, c, d,... a Li2CO3 + b NaNO3 + c SiO2 + d FeC2O4 + e (NH4)2HPO4 = f Li097Na003FeSi003P097O4 + g NH3 + h O2 + i CO2 + j H2O
Теперь запишем алгебраические уравнения баланса каждого атома: Li: a * 2 = f * 97 C: a * 1 + d * 2 = i * 1 O: a * 3 + b * 3 + c * 2 + d * 4 + e * 4 = f * 4 + h * 2 + i * 2 + j * 1 Na: b * 1 = f * 3 N: b * 1 + e * 2 = g * 1 Si: c * 1 = f * 3 Fe: d * 1 = f * 1 H: e * 9 = g * 3 + j * 2 P: e * 1 = f * 97
Теперь присвоим a=1 и решим систему уравнений линейной алгебры: a * 2 = f * 97 a + d * 2 = i a * 3 + b * 3 + c * 2 + d * 4 + e * 4 = f * 4 + h * 2 + i * 2 + j b = f * 3 b + e * 2 = g c = f * 3 d = f e * 9 = g * 3 + j * 2 e = f * 97 a = 1
Решая эту систему линейной алгебры, мы приходим к: a = 1 b = 0.061855670103093 c = 0.061855670103093 d = 0.020618556701031 e = 2 f = 0.020618556701031 g = 4.0618556701031 h = 3.159793814433 i = 1.0412371134021 j = 2.9072164948454
Чтобы получить целые коэффициенты, мы умножаем всю переменную на 194. a = 194 b = 12 c = 12 d = 4 e = 388 f = 4 g = 788 h = 613 i = 202 j = 564
Теперь заменим переменные в исходных уравнениях на значения, полученные в результате решения системы линейной алгебры, и придем к полностью сбалансированному уравнению: 194 Li2CO3 + 12 NaNO3 + 12 SiO2 + 4 FeC2O4 + 388 (NH4)2HPO4 = 4 Li097Na003FeSi003P097O4 + 788 NH3 + 613 O2 + 202 CO2 + 564 H2O
Прямая ссылка на это сбалансированное уравнение:
Расскажите, пожалуйста, об этом бесплатном химическом портале вашим друзьям.
Инструкция по балансировке химических уравнений:
Введите уравнение химической реакции и нажмите "Уравнять". Ответ на этот вопрос появится ниже
Всегда используйте верхний регистр для первого символа в названии химического элемента и нижнем регистре для второго символа. Например: Fe, Au, Co, C, O, N, F. Сравните: Co - кобальт и CO - угарный газ
Для уравнивания полуреакции окислительно-восстановительного процесса используйте {-} или е
Для обозначения зарядов ионов используйте фигурные скобки: {+3} или {3+} или {3}. Пример: Fe {3 +} +. I {-} = Fe {2 +} + I2
В случае сложных соединений с повторяющимися группами, замените неизменные части в формуле реагентов. Например, уравнение C6H5C2H5 + O2 = C6H5OH + CO2 + H2O не будет сбалансированно, но если C6H5 заменить на X, то все получится PhC2H5 + O2 = PhOH + CO2 + H2O
Химическое уравнение представляет собой химическую реакцию. На нем показаны реагенты (вещества, которые начинают реакцию) и продукты (вещества, образующиеся в результате реакции). Например, в реакции водорода (H₂) с кислородом (O₂) с образованием воды (H₂O) химическое уравнение имеет вид:
Однако это уравнение не сбалансировано, поскольку количество атомов каждого элемента не одинаково в обеих частях уравнения. Сбалансированное уравнение подчиняется Закону сохранения массы, который гласит, что материя не создается и не уничтожается в ходе химической реакции.
Балансировка методом проверки или методом проб и ошибок.
Это самый простой метод. Он включает в себя рассмотрение уравнения и корректировку коэффициентов, чтобы получить одинаковое количество атомов каждого типа в обеих частях уравнения.
Подходит для: простых уравнений с небольшим количеством атомов.
Процесс: начните с самой сложной молекулы или молекулы с наибольшим количеством элементов и корректируйте коэффициенты реагентов и продуктов, пока уравнение не станет сбалансированным.
Проверьте баланс. Теперь обе стороны имеют по 4 атома H и 2 атома O. Уравнение сбалансировано.
Балансировка алгебраическим методом
Этот метод использует алгебраические уравнения для поиска правильных коэффициентов. Коэффициент каждой молекулы представлен переменной (например, x, y, z), и ряд уравнений составляется на основе количества атомов каждого типа.
Подходит для: более сложных уравнений, которые нелегко сбалансировать при проверке.
Процесс: присвойте переменные каждому коэффициенту, напишите уравнения для каждого элемента, а затем решите систему уравнений, чтобы найти значения переменных.
Запишите уравнения, основанные на сохранении атомов:
2 a = c
6 a = 2 d
2 b = 2c + d
Присвойте одному из коэффициентов значение 1 и решите систему.
a = 1
c = 2 a = 2
d = 6 a / 2 = 4
b = (2 c + d) / 2 = (2 * 2 + 3) / 2 = 3.5
Отрегулируйте коэффициент, чтобы убедиться, что все они являются целыми числами. b = 3,5, поэтому нам нужно умножить все коэффициенты на 2, чтобы получить сбалансированное уравнение с целыми коэффициентами:
Этот метод полезен для окислительно-восстановительных реакций и включает в себя балансировку уравнения на основе изменения степени окисления.
Подходит для: окислительно-восстановительных реакций, при которых происходит перенос электрона.
Процесс: определить степени окисления, определить изменения степени окисления, сбалансировать атомы, меняющие свою степень окисления, а затем сбалансировать оставшиеся атомы и заряды.
Балансировка методом ионно-электронной полуреакции
Этот метод разделяет реакцию на две полуреакции – одну на окисление и одну на восстановление. Каждая полуреакция уравновешивается отдельно, а затем объединяется.
Лучше всего подходит для: сложных окислительно-восстановительных реакций, особенно в кислых или основных растворах.
Процесс: разделить реакцию на две полуреакции, сбалансировать атомы и заряды в каждой полуреакции, а затем соединить полуреакции, обеспечив баланс электронов.